16,899 research outputs found

    On economic growth

    Get PDF

    The replication of DNA in Escherichia coli

    Get PDF
    Studies of bacterial transformation and bacteriaphage infection (1-5) strongly indicate that deoxyribonucleic acid (DNA) can carry and transmit hereditary information and can direct its own replication. Hypotheses for the mechanism of DNA replication differ in the predictions they make concerning the distribution among progeny molecules of atoms derived from parental molecules.(6

    Shear layer excitation, experiment versus theory

    Get PDF
    The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds

    A Revised Geometry for the Magnetic Wind of theta^1 Orionis C

    Full text link
    Theta^1 Ori is thought to be a hot analog of Bp variables because its optical and UV line and X-ray continuum fluxes modulate regularly over the magnetic/rotational period. A flattened magnetosphere surrounding co-rotates with these stars, producing a periodic modulation of emission and absorption components of the UV resonance lines, as well as of optical H and He lines. In this paper we examine these modulations in detail and point out that the far-blue and near-red wings of C IV and N V resonance lines exhibit anticorrelated modulations, causing mild flux elevations at moderate redshifts at edge-on phase (phi=0.5). However, the lines do not exhibit rest-frame absorption features, the usual signatures of cool static disks surrounding Bp stars. We suggest that this behavior can be explained by the existence of two geometrically distinct wind regions separated by the local magnetic Alfven radius. Wind streams emerging outside this point are forced outward by radiative forces and eventually expand outward radially to infinity - this matter produces the far-blue wing absorptions at phi=0.5. Interior streams follow closed loops and collide at the magnetic equator with counterstreams. There they coalesce and fall back to the star along their original field lines - these are responsible for mild emissions at this same phase. The rapid circulation of the interior wind component back to the star is responsible for the absence of static disk features.Comment: 7 figure

    Escape, capture, and levitation of matter in Eddington outbursts

    Full text link
    Context: An impulsive increase in luminosity by one half or more of the Eddington value will lead to ejection of all optically thin plasma from Keplerian orbits around the radiating star, if gravity is Newtonian and the Poynting-Robertson drag is neglected. Radiation drag may bring some particles down to the stellar surface. On the other hand, general relativistic calculations show that gravity may be balanced by a sufficiently intense radiation field at a certain distance from the star. Aims: We investigate the motion of test particles around highly luminous stars to determine conditions under which plasma may be ejected from the system. Results: In Einstein's gravity, if the outburst is close to the Eddington luminosity, all test particles orbiting outside an "escape sphere" will be ejected from the system, while all others will be captured from their orbits onto the surface of another sphere, which is well above the stellar surface, and may even be outside the escape sphere, depending on the value of luminosity. Radiation drag will bring all the captured particles to rest on this "Eddington capture sphere," where they will remain suspended in an equilibrium state as long as the local flux of radiation does not change and remains at the effective Eddington value.Comment: 6 pages, 6 figures. To be published in Astronomy and Astrophysic

    Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems

    Get PDF
    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants
    corecore